沈浙奇

发布时间:2020-11-17浏览次数:5923

沈浙奇,男,副教授,研究生,博士学位

(Email: zqshen@hhu.edu.cn,Tel: )

个人学术主页:

 https://curian127.github.io/

researchgate

publons


个人简历:

沈浙奇,博士,河海大学副教授,硕士生导师,海洋技术系副主任。2007年学士、2012年博士毕业于浙江大学数学系,先后获数学与应用数学学士、计算数学博士学位,其后进入自然资源部第二海洋研究所,作为博士后从事物理海洋学专业的研究。


主要从事资料同化方法研究和耦合资料同化系统研发,在非线性的粒子滤波器同化和地球系统模式的耦合同化系统方面积累了大量工作经验,取得了一定成果。代表性成果包括:1)发展了粒子滤波器的混合算法和局地化粒子滤波器的算法,为解决大模式中粒子滤波器的退化问题提供了方案;2)建立了基于通用地球系统模式CESM的多源海洋观测资料耦合同化系统,采用集合滤波器方法实现了耦合模式的状态估计和物理参数估计;3)发展了耦合同化局地化方案和基于集合同化的目标观测公式。

发表论文40余篇,主持国家自然科学基金青年项目1项、面上项目1项、作为骨干参与国家重点研发计划两项、国家自然科学基金委重大基金一项、重点基金一项。2019年获得自然资源部第二海洋研究所青年英才称号,目前为自然资源部第二海洋研究所“青年海星学者”。2021年获得江苏省“双创博士”人才项目。

-----


学习经历:

 

2007 – 2012, 浙江大学数学系,计算数学,博士

2003 – 2007, 浙江大学数学系,数学与应用数学,学士

 

工作经历:

2020.8 - 至今, 河海大学海洋学院,副教授

2017.11 - 2020.7,自然资源部第二海洋研究所,卫星海洋环境动力学国家重点实验室,副研究员

2016.11 - 2017.7,加拿大北大不列颠哥伦比亚大学(UNBC),访问学者

2015.11 - 2017.11,自然资源部第二海洋研究所,卫星海洋环境动力学国家重点实验室,助理研究员

2012.7 - 2015.11,国家海洋局第二海洋研究所,博士后

  


研究方向:

  • 资料同化方法

  • 耦合资料同化系统

  • 参数估计方法应用


在介绍数据同化之前,我先共享一本书中的章节 蝴蝶效应,这来自人民邮电出版社2021年出版的一部译作《混沌》,第一章主要介绍了发现蝴蝶效应及其背后的科学意义,以一种比较生动的方式,让我们了解继相对论、量子力学之后,二十世纪的第三次物理学革命一“混沌”。

然后值得共享的还有《自然》杂志上的一篇文章数值天气预报的寂静革命,当然,已经有网友将其翻译成中文了。这篇综述解释了数值天气预报最基础的科学根据,并着重介绍之前预报技巧受益最多的三个领域一对物理过程的表述,集合预报和模式初始化。而模式初始化的关键,就是数据同化

关于数据同化,我写了一篇比较浅的介绍文章探秘数据同化:大气海洋科学中的信息融合与精准预测,算是一个普通的简介。

更实用的,其实是用数值实验来介绍同化的概念,我这里提供了一个洛伦茨63模式(即揭示蝴蝶效应的那个模型)的同化实验代码,然后从代码介绍了从三维变分到集合卡尔曼滤波器的同化方法思路。此外,数据同化也能用于参数估计,也用该模式给出了例子。在集合卡尔曼滤波器中,局地化也是一种非常重要的关键技术。



主讲课程:


 - 数学物理方法 (海洋20级_1, 海洋21级_1, 海技21, 海洋22级)

 - 计算方法 (海技22级)

 - 业务化海洋学导论(海洋20级_1)


 - 数据同化理论与方法(硕博)



科研项目:


  • 国家自然科学基金面上项目,基于地球系统模式的耦合参数估计方法研究,2022/01 - 2025/12,主持

  • 中央高校基本科研业务费专项, 2021-2024, 主持

  • 江苏省创新创业(双创)博士项目,2021-2023,主持

  • 国家自然科学基金青年项目,粒子滤波器局地化算法研究,2017/01-2019/12,主持

  • 自然资源部第二海洋研究所科研业务费专项“青年英才”计划,基于DART-CESM集合同化系统的强耦合同化方法研究,2019/01-2020/07。主持

  • 国家重点研发计划“海洋环境安全保障”重点专项,全球高分辨率海洋资料同化技术研究与业务应用示范,2016/09 - 2020/12,参与(课题一)。

  • 国家重点研发计划“全球变化与应对”重点专项,高影响海-气环境事件预报模式的高分辨率海洋资料同化系统研发,2017/07 - 2022/06。参与(课题二)。

  • 国家自然科学基金重大项目,ENSO可预测性评估及预测实验,2017/01 - 2022/12,参与(课题四)。

  • 国家自然科学基金重点项目,近135年印度洋偶极子集合预报试验及可预报性研究,2016/01 - 2020/12,参与。

  • 国家海洋局科学技术司“全球变化与海气相互作用”专项,海洋动力系统可预报性研究,2016/01 - 2020/07,参与(课题三)。



论文论著:


Shen, Z., Chen, Y., Li, X., & Song, X. (2024). Parameter estimation for ocean background vertical diffusivity coefficients in the Community Earth System Model (v1.2.1) and its impact on  El Niño–Southern Oscillation forecasts. Geoscientific Model Development17(4), 1651–1665. https://doi.org/10.5194/gmd-17-1651-2024

Wang, R., & Shen, Z. (2024). A Deep Neural Network Ensemble Adjustment Kalman Filter and Its Application on Strongly Coupled Data Assimilation. Journal of Marine Science and Engineering12(108). https://doi.org/10.20944/preprints202312.0284.v1

Chen, Y., Shen, Z., Tang, Y., & Song, X. (2023). Ocean data assimilation for the initialization of seasonal prediction with the Community Earth System Model. Ocean Modelling, 183(102194). https://doi.org/10.1016/j.ocemod.2023.102194

Li, X., Tang, Y., Shen, Z., Zhou, F., Song, X., Wu, Y., & Li, Y. (2023). A Region-Optional Targeted Observation Method and its Application in the Sea Surface Temperature Prediction Associated with the Indian Ocean Dipole. Journal of Geophysical Research: Oceans, 128(8).
Rao, W., Tang, Y., Wu, Y., Shen, Z., Song, X., Li, X., Lian, T., Chen, D., & Zhou, F. (2023). A new ensemble-based targeted observational method and its application in TPOS 2020. National Science Review, nwad231. https://doi.org/10.1093/nsr/nwad231

Shen, Z., & Tang, Y. (2022). A two-stage inflation method in parameter estimation to compensate for constant parameter evolution in Community Earth System Model. Acta Oceanologica Sinica41(2), 12.

Chen, Yihao, Zheqi Shen, and Youmin Tang. 2022. “On Oceanic Initial State Errors in the Ensemble Data Assimilation for a Coupled General Circulation Model.” Journal of Advances in Modeling Earth Systems 14(12). doi: 10.1029/2022MS003106.

Chen, Yihao, Zheqi Shen, Youmin Tang, and Xunshu Song. 2023. “Ocean Data Assimilation for the Initialization of Seasonal Prediction with the Community Earth System Model.” Ocean Modelling 183(102194).

Li, Xiaojing, Youmin Tang, Zheqi Shen, and Yi Li. 2023. “Spatial Variations in Seamless Predictability of Subseasonal Precipitation Over Asian Summer Monsoon Region in S2S Models.” Journal of Geophysical Research: Atmospheres. doi: https://doi.org/10.1029/2023JD038480.

Shen, Zheqi, Qian Zhong, and Cengsi Chen. 2022. “Parameter Estimation Using Adaptive Observations towards Maximum Total Variance Reduction with Ensemble Adjustment Kalman Filter.” Frontiers in Climate 4. doi: 10.3389/fclim.2022.850386.

Deng, S., Shen, Z.,# Chen, S., & Wang, R. (2022). Comparison of perturbation strategies for the initial ensemble in ocean data assimilation with a fully coupled earth system model. Journal of Marine Science and Engineering10(3), 412.

Liu, T., Song, X., Tang, Y., Shen, Z., & Tan, X. (2022). ENSO predictability over the past 137 years based on a CESM ensemble prediction system. Journal of Climate35(2), 763–777.
Shen, Z., Tang, Y., Li, X., & Gao, Y. (2021). On the localization in strongly coupled ensemble data assimilation using a two-scale Lorenz model. Earth and Space Sciencehttps://doi.org/10.1029/2020EA001465

Shen, Z., Zhang, X., & Tang, Y. (2016). Comparison and combination of EAKF and SIR-PF in the Bayesian filter framework. Acta Oceanologica Sinica35(3), 69–78. https://doi.org/doi: 10.1007/s13131-015-0757-x

Shen, Z., & Tang, Y. (2015). A modified ensemble Kalman particle filter for non-Gaussian systems with nonlinear measurement functions. Journal of Advances in Modeling Earth Systems7(1), 50–66.

Gao, Y., Liu, T., Song, X., Shen, Z., Tang, Y., & Chen, D. (2020). An extension of LDEO5 model for ENSO ensemble predictions. Climate Dynamics. https://doi.org/10.1007/s00382-020-05428-7

Shen, Z., Tang, Y., & Li, X. (2017). A new formulation of vector weights in localized particle filter. Quarterly Journal of the Royal Meteorological Society143(709), 3268–3278. https://doi.org/10.1002/qj.3180

Li, J., Liang, C., Tang, Y., Liu, X., Lian, T., Shen, Z., & Li, X. (2017). Impacts of the IOD-associated temperature and salinity anomalies on the intermittent Equatorial Undercurrent anomalies. Climate Dyn, 51(4), 1391–1409.
Li, X., Tang, Y., Zhou, L., Yao, Z., Shen, Z., Li, J., & Liu, T. (2020). Optimal error analysis of MJO prediction associated with uncertainties in sea surface temperature over Indian Ocean. Climate Dynamics. https://doi.org/10.1007/s00382-020-05230-5
Lian, T., Shen, Z., Ying, J., Tang, Y., & Ling, Z. (2018). Investigating the uncertainty in global SST trends due to internal variations using an improved trend estimator. Journal of Geophysical Research - Oceans, 123(3), 1877–1895.
Liu, T., Tang, Y., Yang, D., Cheng, Y., Song, X., Hou, Z., Shen, Z., Gao, Y., Wu, Y., Li, X., & Zhang, B. (2019). The relationship among probabilistic, deterministic and potential skills in predicting the ENSO for the past 161 years. Climate Dynamics. Climate Dynamics, 53(11), 6947–6960.
Tang, Y., Shen, Z., & Gao, Y. (2016). An Introduction to Ensemble-Based Data Assimilation Method in the Earth Sciences. In D. Lee, T. Burg, & C. Volos (Eds.), Nonlinear Systems—Design, Analysis, Estimation and Control (pp. 153–193). IntechOpen. https://doi.org/10.5772/64718
Wu, Y., Shen, Z., & Tang, Y. (2020). A Flow‐dependent Targeted Observation Method for Ensemble Kalman Filter Assimilation Systems. Earth and Space Science, 7(7). https://doi.org/10.1029/2020EA001149
Yao, Z., Tang, Y., Lian, T., Xu, D., Li, X., Shen, Z., Zheng, J., Zhang, B., & Zhang, C. (2019). Roles of atmospheric physics and model resolution in the simulation of two types of El Niño. Ocean Modelling, 101468. https://doi.org/10.1016/j.ocemod.2019.101468
Zhang, H., Wu, R., Chen, D., Liu, X., He, H., Tang, Y., Ke, D., Shen, Z., Li, J., Xie, J., Tian, D., Ming, J., Liu, F., Zhang, D., & Zhang, W. (2018). Net Modulation of Upper Ocean Thermal Structure by Typhoon Kalmaegi. Journal of Geophysical Research - Oceans, 123(10), 7154–7171. https://doi.org/10.1029/2018JC014119
Zhang, J., Zhang, A., Zhang, X., Zhang, L., Li, D., Shen, Z., & Sun, C. (2020). Targeted observation analysis of the tides and currents in a Coastal Marine Proving Ground. Ocean Dynamics. https://doi.org/10.1007/s10236-020-01398-w
Zhu, J., Chen, Z., & Shen, Z. (2012). The Mode Relation for Open Acoustic Waveguide Terminated by PML with Varied Sound Speed. Computer Modeling in Engineering & Sciences(CMES), 83(5), 547–559.
Zhu, J., & Shen, Z. (2011a). Computation of Nonlinear Schrödinger Equation on an Open Waveguide Terminated by a PML. Computer Modeling in Engineering & Sciences(CMES), 71(4), 347–362.
Zhu, J., & Shen, Z. (2011b). Dispersion relation of leaky modes in nonhomogeneous waveguides and its applications. Journal of Lightwave Technology, 29(21), 3230–3236.
Zhu, J., Shen, Z., & Chen, Z. (2012). Dispersion relations of the modes for open nonhomogeneous waveguides terminated by perfectly matched layers. JOSA B, 29(9), 2524–2530.
唐佑民, 郑飞, 张蕴斐, 沈浙奇#, 李俊德, & 方玥炜. (2017). 高影响海-气环境事件预报模式的高分辨率海洋资料同化系统研发. 中国基础科学, 19(119), 50–56.
张钰婷, 沈浙奇#, & 伍艳玲. (2021). 基于 CESM 模式的局地化粒子滤波器与集合卡尔曼滤波器同化实验. 海洋学报.
沈浙奇, 唐佑民, & 高艳秋. (2016). 集合资料同化方法的理论框架及其在海洋资料同化的研究展望. 海洋学报, 38(3), 1–14. https://doi.org/10.3969/j.issn.0253-4193.2016.03.001



研究生:

  

  • 张钰婷,2019级学术硕士(自然资源部第二海洋研究所),研究课题《粒子滤波器在通用地球系统模式(CESM)耦合同化中的应用》, zyt_ocean@163.com

  • 汪韧希,2021级学术硕士,毕业论文《深度学习在海洋大气数值模拟及资料同化中的应用》 ,wrx_17330937822@163.com

  • 陈溢豪,2020级博士(共同指导),毕业论文《基于地球系统模式和集合调整卡尔曼滤波器的海洋资料同化和季节预测研究》, wscyh2953917@126.com

  • 王淇,2022级专业硕士

  • 姚淞研,2023级专业硕士



学术兼职:

  • 江苏省海洋学会海洋-气象信息服务专业委员会 副主任委员

  • 全国海洋资料同化大会组委会成员

  • Frontiers in Mathematics of Computation and Data Science 评审编辑

  • 海洋学报英文版(Acta Oceanologica Sinica), Frontiers in Applied Mathematics and Statistics, Nonlinear Processes in Geophysics, 海洋学报, 热带海洋学报,大气和海洋科学快报 等审稿人